Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuronal Signal ; 7(2): NS20220064, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37332846

RESUMO

Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.

2.
Front Neurosci ; 17: 1146710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950133

RESUMO

The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.

3.
Brain Behav Immun Health ; 25: 100514, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36177307

RESUMO

Schizophrenia and other neurodevelopmental disorders often have very heterogeneous symptoms, especially regarding cognition: while some individuals may exhibit deficient cognition, others are relatively unaffected. Studies using developmental animal models often ignore phenotypic heterogeneity in favour of traditional treatment/control comparisons. This may result in resilient or unaffected individuals masking the effects of susceptible individuals if grouped together. Here, we used maternal immune activation and limited bedding and nesting, respectively, as a two-hit neurodevelopmental model for schizophrenia. Both factors reduced cognitive function in a novel object recognition (NOR) task. While we found treatment group effects on cognitive phenotypes, behavioural clustering identified three subpopulations exposed to either insult: those exhibiting 'typical' cognitive performance on the NOR, an intermediate phenotype, or a marked deficit. These clusters included offspring from each treatment group, although both intermediate and marked deficit clusters were composed primarily of offspring from treated groups. Clustering allowed stratification within treatment groups into 'susceptible' and 'resilient' individuals, while also identifying conserved phenotypes across treatment groups. Using unbiased cluster analyses in preclinical models can better characterize phenotypes and enables a better understanding of both face and construct validity of phenotypic heterogeneity. The use of unbiased clustering techniques may help identify potential markers associated with individual susceptibility and resilience in neurodevelopmental disorder models.

4.
J Psychopharmacol ; 34(1): 115-124, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580184

RESUMO

BACKGROUND: Sub-chronic phencyclidine treatment (scPCP) provides a translational rat model for cognitive impairments associated with schizophrenia (CIAS). CIAS genetic risk factors may be more easily studied in mice; however, CIAS associated biomarker changes are relatively unstudied in the scPCP mouse. AIM: To characterize deficits in object recognition memory and synaptic markers in frontal cortex and hippocampus of the scPCP mouse. METHODS: Female c57/bl6 mice received 10 daily injections of PCP (scPCP; 10 mg/kg, s.c.) or vehicle (n = 8/group). Mice were tested for novel object recognition memory after either remaining in the arena ('no distraction') or being removed to a holding cage ('distraction') during the inter-trial interval. Expression changes for parvalbumin (PV), glutamic acid decarboxylase (GAD67), synaptosomal-associated protein 25 (SNAP-25) and postsynaptic density 95 (PDS95) were measured in frontal cortex, dorsal and ventral hippocampus. RESULTS: scPCP mice showed object memory deficits when distracted by removal from the arena, where they treated previously experienced objects as novel at test. scPCP significantly reduced PV expression in all regions and lower PSD95 levels in frontal cortex and ventral hippocampus. Levels of GAD67 and SNAP-25 were unchanged. CONCLUSIONS: We show for the first time that scPCP mice: (a) can encode and retain object information, but that this memory is susceptible to distraction; (b) display amnesia after distraction; and (c) express reduced PV and PSD95 in frontal cortex and hippocampus. These data further support reductions in PV-dependent synaptic inhibition and NMDAR-dependent glutamatergic plasticity in CIAS and highlight the translational significance of the scPCP mouse.


Assuntos
Disfunção Cognitiva/metabolismo , Proteína 4 Homóloga a Disks-Large/biossíntese , Glutamato Descarboxilase/biossíntese , Parvalbuminas/biossíntese , Esquizofrenia/metabolismo , Proteína 25 Associada a Sinaptossoma/biossíntese , Animais , Biomarcadores/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/complicações , Feminino , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Fenciclidina , Ratos , Reconhecimento Psicológico , Esquizofrenia/induzido quimicamente , Esquizofrenia/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...